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ABSTRACT

This paper describes the development of a mathe-
matical model for predicting the strength and micro-
mechanical failure characteristics of continuously
reinforced ceramic matrix composites. The local-global
analysis models the vicinity of a propagating crack tip
as a local heterogeneous region (LHR) consisting of
spring-like representation of the matrix, fibers and
interfaces. This region is embedded in an anisotropic
continuum (representing the bulk composite) which is
modeled by conventional finite elements.

Parametric studies are conducted to investigate
the effects of LHR size, component properties, inter-
face conditions, etc. on the strength and sequence of
the failure processes in the unidirectional composite
system. The results are compared with those predicted
by the models developed by Marshall et al. (1985) and
by Budiansky et al. (1986).

INTRODUCTION

The failure characteristics of fiber reinforced
composites are dictated by various micromechanical
failure processes such as matrix microcracking, slip-
ping between matrix and fibers, delamination and fiber
breakage. This paper presents a local-giobal model (it
combines micromechanical and macromechanical analyses)
which considers the vicinity of a crack tip a "process
zone" capable of modeling such phenomena. Of special
interest to our study are quantities such as critical
matrix cracking stresses, since such damage leads to
oxidation and eventually to fiber degradation, and is
therefore used as an important criteria in design.
Also of interest is the global response of the system
to external loads (axial P-§ curves) and the ultimate
load that the composite can sustain.

Before presenting a detailed description of the
present model, a comparative review of existing models

for fracture mechanics of brittle matrix composites (BMC)
The most quoted models are those developed

is warranted.
by Aveston et al. (1971), Marshall et al. (1985) and
Budiansky et al. (1986). The following are some of the
key concepts underlined in these models which we shall
seek to study or validate through our model.

Marshall et al. (1985) have developed a model
which can be used to predict the stress at which a
matrix crack propagates across the specimen. This
stress will, henceforth, be called the critical matrix
cracking stress, %mat. In their analysis, a frictional
bond between fibers and matrix was assumed whereby
slipping takes place when the interface shear stress
reaches a critical value. Using a stress intensity
factor approach, they have shown that a distinction
needs to be made between short and long cracks. Short
cracks are those for which the entire crack length con-
tributes to the stress intensity factor as a result of
fiber bridging, and therefore propagate at a stress
which depends on the crack length. Long cracks experi-
ence a crack mouth displacement which asymptotically
approaches a constant value wug. This limiting dis-
placement is reached at a distance c¢o from the crack
tip. For such cracks, 9pat s independent of the
crack length, since the contribution to the stress
intensity factor from the fibers is limited to the
length c¢o behind the crack tip. It is important to
note that this model implicitly assumes the stress-
strain diagram shown in Fig. 1(a), since no nonlineari-
ties are assumed prior to the matrix cracking stresses.
It will be shown using the model proposed in this paper
that this assumption leads to a good estimate of Fpa¢.
However, for various constituent properties the present
model shows that significant nonlinearities may occur
prior to Opat (Fig. 1(b)). These irreversible defor-
mations, which are due to slipping between fiber and
matrix and microcracking may prove to be significant
for fatigue types of loading.

Budiansky et al. (1986) have considered steady
state matrix cracking stresses for two conditions:

(1) unbonded, frictionally constrained fibers, where
the frictional restraint is the same as in Marshall

et al. (1985); and (2) initially bonded fibers which
debond due to crack tip stresses. The analysis is
based on the Griffith energy criterion which considers
the change in potential energy with respect to crack
growth. The critical cracking condition is associated
with the upstream and downstream stress states, far
ahead of and behind the crack front.



For case (1), the results generalize those of the
ACK theory by considering matrix cracking stresses for
conditions which 1ie between the no-slip and the large
slip cases. They showed that the critical cracking
stress, 9nat, can be obtained using the graph shown in
Fig. 2 in conjunction with Egs. (1) and (2). The pro-
cedure includes first evaluating the two parameters 9
and 9} given by
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where B is a utility constant given by
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Ef and Ep are the Young's moduli of the fiber
and matrix, E 1is the composite modulus using the rule
of mixtures, V¢ and VY are fiber and matrix volume
fractions respectively, r 1is the fiber radius, Gn is
the critical strain energy release rate of the matrix,
and To is the interface shear strength.

It is observed that for 91/9 < 1.0, the ACK
expression for large slip cracking stress is recovered,
i.e.,

e
6VfEf‘0(KIg> (- Vm)l E, &>

vamEr

mat

where (K?C> is the fracture toughness of the matrix.

The ratio 9y/9 is then calculated and Fig. 2 is used
to obtain the corresponding value of Ip3+/9%.

For bonded-debonding fibers, the following expres-
sion was derived:
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where 14 is the debond length and Gy is the criti-
cal energy reiease rate of the interface.

Expressions for the slip length 1g (case (1))
and debond length 14 (case (2)) will be discussed
subseguently.

This paper presents the preliminary results
obtained using a model which can be used to predict
the fracture characteristics of reinforced ceramic
matrix composites. This model has been used to simu-
late an experiment in which a notched specimen is sub-
jected to tensile stresses. The results are compared
to those obtained using the aforementioned models.
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THE LOCAL MODEL

The local heterogeneous region (LHR) shown in
Fig. 3 consists of three distinct components: fibers,
matrix, and fiber-matrix interface. Following Kanninen
et al. (1977), each component is assumed homogeneous
and isotropic and is modeled by a succession of rectan-
gular spring elements (Fig. 4).

Each LHR spring element consists of four exten-
sional springs and one rotary spring at each of the
corner nodes. Each node has 2 degrees of freedom as
shown in Fig. 5. An assembly of such elements behaves
1ike a homogeneous anisotropic continuum in a state of
plane deformation.

The stiffness matrix of a LHR element is given by

{F} = [K1{d}, (5)

where {F} 1is the nodal force vector, [K] 1is the ele-
ment stiffness matrix, and {d} is the nodal displace-
ment vector.

The LHR element spring stiffnesses are related to
the elastic properties of the material. The deriva-
tions for the spring stiffnesses and for the LHR stiff-
ness matrix are given in Appendix A.

Each LHR fiber and matrix element is capable of
fracturing in either of the four possible modes shown
in Fig. 6. Modes 1 and 2 correspond to crack growth
in the x-direction by an amount a/2, while modes 3
and 4 represent cracking in the y-direction within
the element by a length of b/2, where a and b are
the length and width, respectively, of a LHR element.
These damage lengths have been used for the sake of
simplicity in representing fracture events in the LHR
elements. Each event contributes to a loss of stiff-
ness of the element, and consequently leads to a change
in the strain energy, AEg, given by:

T
AE = {u} [8K]{u} 6)

s 2A¢

where {u} s the displacement vector of the element,
[6K] 1is the change in the element stiffness due to a
fracture event, and Ac is the length of the crack in
the element, i.e., a/2 or b/2. The above relation-
ship is derived in Appendix B.

It is assumed that for each material (fiber and
matrix) a critical rupture energy is known. This pro-
vides a decision rule for breakage in each separate
element of the LHR.

For purposes of comparison with the results of
Marshall et al. (1985), preliminary simulations were
conducted assuming that fiber slipping occurs at a
critical shear stress Tg. In subsequent studies, more
realistic modeling which includes delamination and an
elastic-plastic friction model will be employed.

THE LOCAL-GLOBAL MODEL

A schematic representation of a typical local-
global model is shown in Fig. 7 (not to scale). The
notched composite specimen modeled has a length
1 =20 cm and width w = 5 cm. The LHR surrounds the
crack tip and is embedded in the bulk anisotropic com-
posite, discretized by standard four-node constant
strain isoparametric finite elements. The LHR and the
outer zone are coupled through the enforcement of dis-
placement compatibility at the nodes between the LHR
and standard finite elements.
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The specimen is loaded incrementally in tension
perpendicular to the crack plane and parallel to the
direction of the fibers. Displacements are evaluated
at every nodal point in the LHR, and the strain energy
associated with each possible rupture event in every
LHR element is calculated. The critical rupture ener-
gies of the fiber and matrix elements are obtained from
their fracture toughnesses as follows
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where K?C (K;C> is the fracture toughness of the
matrix (fiver) materfal, €1, (€L ) is the critical
energy for a given length of damage growth within the
matrix (fiber) LHR element; and vy (v¢) s the Pois-
son's ratio of the matrix (fiber).

The critical regions, if any exist, are allowed to
fracture in any one of the four modes described eartier
and appropriate modifications are made in the LHR
stiffness matrix.

As stated earlier, failure of the interface ele-
ments is based on the interfacial shear stress crite-
ria. For each load level, the shear stress Ty, is
computed in every LHR interface element and this value
is compared to the prescribed critical shear stress
To. If Tyy < T (no-slip condition) relative dis-
placement between the fiber and matrix is constrained.
For elements where Tyy > Tg, the fiber is allowed to
siip through the matrix and appropriate changes are
made in the shear stiffness of the interface element
so that slip takes place at a constant shear stress
T = T

Thg solution procedure is repeated for the next
load increment to reflect additional local rupture
events. The progression of the main crack through the
matrix (and eventually through the fibers) is followed
by expanding the LHR zone continuously. The load at
which the LHR elements begin to fail without any fur-
ther increment of load is recorded as the ultimate
strength of the composite. This is generally found to
occur at a stage when the main crack has broken through
four (or sometimes less) successive fibers.

RESULTS

Physical Properties and Parameters

Most of the results presented in this paper assume
material properties (refer to Table I) obtained from
the following sources: MWeeton et al. (1986), DiCarlo
(1984), and Bubsey et al. (1983).

Two fiber volume fractions were considered, 0.2
and 0.4. Consistent with these values were the proper-
ties of the anisotropic bulk composite:

Ve = 0.2: Eyy = 242.8 GPa; Exy = 227.47 GPa;
ny = 0-3; ny = ]00.42 GPa
Vf = 0.4: Eyy = 279.6 GPa; Exx = 253.92 GPa;

ny = 0.3; ny = ]]2.93 GPa

The interface shear strength, Tp, was varied in the
practical range of 0 to 10 MPa. The fracture toughness
of the matrix was also varied from 1.0 to 5.0 MPa+/m.

The diameter of the SiC fibers (2r) was taken as
100 pym. Assumption of regular hexagonal packing arrange-
ment gave an interfiber distance of about 213 and 150 um
(center to center) for volume fractions of 0.2 and 0.4,
respectively. The interface was assumed to have a nom-
inal thickness of 5 um.

To investigate the convergence of the local-global
model, ultimate and matrix cracking stresses were stud-
ied for various LHR sizes. Figure 8 shows the effect
of starting LHR size on the ultimate stress ;¢ and
the critical matrix cracking stress, 9yat. Convergence
is observed for LHR lengths greater than about 1000 um
and hence LHR sizes of the order of 1000 to 1500 pm
were used throughout the study.

Comparisons With Results Obtained by Marshall et al.
(1985)

Effect of crack length. As mentioned previously,
Marshall et al. (1985) have shown that when the crack
length is greater than a certain characteristic size,
matrix cracking stresses are independent of the crack
length c¢. To check this result, critical matrix

cracking stresses (9y;¢) were calculated for various
M
For the case =, = 10 MPa, K. = 4.6 MPa /M

and v. = 0.4, the results are presented in Fig. 9.
Though' Opat s high for small crack lengths, it is
found to be independent of crack length for

¢ > 0.046 cm. This compares favorably to the steady
state crack length proposed by Marshall et al. (1985)
obtained from the relation

crack sizes.
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n

where n = veEge/vpEn, K?C is the fracture toughness of

the matrix, and I 1is 1.2 for straight cracks.
It should be noted that Eg. (8) was derived by

assuming that the matrix stress intensity factor, KI ,

is related to the composite stress intensity, K% , by
the relation K? = K%Em/E. This relation is not valid
unless the crack length is of the order of several
fiber spacings. In a future communication, the range
of validity of this equation will be reported.

Effect of matrix fracture toughness on o and

mat
oyt Having obtained the steady state crack length,

the critical matrix cracking stress, 9pat. and ultimate
strength of the composite, 9,14, were investigated next
using an initial crack length such that steady state
conditions are obtained. The ultimate strength and
omat depend on several constituent material properties
such as fracture toughness of the components, interface
shear strength, fiber spacing and volume fraction of
the fibers etc. Each of these parameters are consid-

s . M
ered separately. The variation of Omat with KIc

over the range 1.0 to 5.0 MPa+/m is studied for a notch
length of 1 cm and interfacial shear strength of 10 MPa.

The critical matrix cracking stress is found to increase
with K?C and the results compare well with those of

Marshall et al. (1985) given by




(9

The results from our model and those obtained from
the above relationship are shown in Fig. 10. Since the
results of Marshall et al. (1985) and Budiansky et al.
(1986) are almost equivalent, they do not plot as sepa-
rate curves. The ultimate strength is not affected

significantly by variation in K?C , since the ultimate

strength of the composite is controlled primarily by
the fiber-bundle strength. If 1, 1is the Jength of
the initially uncracked ligament in the notched speci-
men of width w, the bundle strength is given by
9eVe(1,/w), where O¢ is the tensile strength of the
fibers. For the SiC fibers, 9 = 1.83 GPa. Hence,

for a notch length of 1 ¢cmand w = 5 cm, the theoret-
ical bundle strength is 586 MPa for V¢ = 0.4, and

293 MPa for Vg = 0.2. The ultimate composite strength,
%,1t, obtained using our model is slightly less than
these calculated values. This is due to the sequential
breakage of the fibers leading to catastrophic failure.

Effect of interfacial shear strength. Since
interface shear strengths are difficult to estimate, a
parametric study was conducted for Ty ranging from
5.0 to 10.0 MPa. The variation of 9p3t with Tp,
shown in Fig. 11, shows good agreement with results
obtained by Marshall et al. (1985) using Eq. (9).

Effect of fiber volume fraction. Two fiber volume
fractions v¢ were considered, 0.2 and 0.4. The fiber
volume fraction controls the interfiber spacing and its

: M
effects on “nat and oyt with respect to KIC and

To are presented in Figs. 12¢a) and (b). It is
observed that 9pat and 9yt values for V¢ = 0.2
are approximately half of those for V¢ = 0.4. These
results agree with those obtained using Eq. (9).

Variation of crack mouth opening displacement with
crack length. Another key concept introduced in the
model developed by Marshall et al. (1985), is that of
the equilibrium crack opening u = uy for long cracks.
To study the effect of crack length on u, the crack
opening displacement at the mouth of the c¢rack was
recorded for various crack lengths (Fig. 13). Although
u increases with increasing crack length for crack
fengths Tess than 1 cm, it appears to approach a con-
stant value of approximately 1 um for crack lengths
greater than that size. This value may be compared to
the Timiting displacement up estimated by Marshall
et al. (1985) by the relationship

2
v = o’r (10

o 2
{4TOVfEf(1 + n)}

where o s the farfield applied load. For @ = 9pa¢
= 300 MPa, Tp = 10 MPa, and V¢ = 0.4, up = 0.8 um.
The agreement is quite good.

Comparison With Results Obtained by Budiansky et al.
(1986)

Comparison of critical matrix cracking stress
Omat- The critical matrix cracking stresses obtained
Using our model are compared to those obtained by
Budiansky et al. (1986) for unbonded composites

(Eqs. (1) to (3)). Because their results lead to pre-
dictions equivalent to those of Marshall et al. (1985)
they plot as the same curve in Figs. 10 and 11.

Comparison of slip lengths. For unbonded compos-
ites, the slip length has been derived by Budiansky
et al. (1986) as

) an

where ¢ is the slip length on either side of the
crack face, o 1is the applied stress, and

= 55 SO | S 12 12)
p = Vo [EeCT+ v

M :
For T = 10 MPa, KIC = 4.6 MPa /m; and o = o
300 MPa, ls = 806 um.

Results of our simulation are schematically pre-
sented in Fig. 14. The slip length is approximately
900 to 1000 um on either side of the crack face, which
agrees quite well with the result of Budiansky et al.
(1986).

mat

Composite Failure Sequence

While the existing models are concerned only with
the steady state condition, the present model enables
a detailed study of the failure sequence as the speci-
men is loaded incrementally. A schematic representa-
tion of the failure events in the LHR for a notch

length of 1 c¢m, Ty = 10 MPa, K?C = 4.6 MPa\/a is shown

in Fig. 14. Slipping first occurs at an applied stress
of 140 MPa, and the interface continues to slip with
increasing load. The first matrix crack is observed
around the crack tip at a stress of 295 MPa. For

matrices with lower KTC, some microcracking is observed

around the crack tip before the growth of the main
crack. The matrix crack steadily progresses through
the composite section and traverses it completely at a
critical matrix cracking stress of about 305 MPa
(%mat?. As the load is increased, several secondary
matrix cracks appear in the matrix. The first fiber
failure occurs at a load of 505 MPa, and in general,
this occurs at a load of about 90 percent of the ulti-
mate stress. With increasing load, the crack breaks
through three successive fibers before catastrophic
failure occurs at an ultimate stress of 550 MPa.

Load-Deflection Behavior

The load-deflection curves as functions of the
interfacial shear strength are shown in Fig. 15.
Except for the case Tp = 0, it is observed that non-
linearities begin at point (a) before OIpz¢ is
reached. This decrease in stiffness is a result of
fiber slipping and matrix microcracking. A further
reduction in stiffness occurs at region (b). This
region corresponds to extensive matrix cracking through
the section of the composite, so that the load is now
essentially carried by the fibers. The ultimate fail-
ure load (9;1¢) is reached at (c¢).

CONCLUSION

A model is presented which can be used to predict
the failure characteristics of fiber reinforced compos-
ites. Preliminary results obtained using the model
compare favorably with those predicted by existing



models. This model may be generalized to consider more
complicated geometries and loading conditions as well
as the behavior of composites containing a random dis-
tribution of microflaws and strengths. It has been
suggested (Dollar and Steif, 1988)> that assumption of
constant interface shear strength may not be accurate.
The model is currently being improved through the
implementation of more realistic interfacial constitu-
tive modeling. In subsequent work, special friction
interface elements developed by Plesha et al. (1987)
will be used.
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APPENDIX A - DERIVATION OF LHR ELEMENT STIFFNESS

For a homogeneous isotropic material, the stress
strain relationship is given by

o0 (a-w v 0
oy 2 ——a—ry | v (- w 0
Ty 0 0 (- 2w
Exx
x (e, (A1)
ny
or,
S N L R PR EY I I
oy 0= |E21 E2o Eazl € ey (A2)
Ty 1B Bz Eazf [ eyy

The continuum is modeled by a set of spring ele-
ments as described previously. The values of the
spring constants are related to the material's elastic
properties by the following relationships:

i3 h

Ky = Epy

.. bE

ijo_ 1t

Koy = 5 (A3)
R JarY;

Wb

a-b-E
ci=———2--3-3 for all i,i=1,....4

where a and b are the length (x-direction) and
width (y-direction) of the LHR element respectively;

Kij is the extensional stiffness in the x-direction

XX P
between the 1th and jth nodes; K'3 s the exten-
vy . th

sional stiffness in the y-direction between the i
and jth
nent (Poisson's contraction effect); and Ci
rotational stiffness at each node.

The above retationships are derived as follows.
Consider a finite continuum element of dimensions
a x b, which is modeled by a LHR spring element of the
same dimensions. By forcing the spring element to

nodes; Kli is the cross extensional compo-
is the



behave 1ike the continuum element, appropriate relation-
ships may be obtained for the spring stiffnesses, Kyy,
Kxy, Kyy, and Cj. Since the material is isotropic,

12 34 14 23 .
Kex = Kox = K Kyy = Kyy = Ky
(22334 1 0e

Xy ©OUXYy T oUxy o Uxy Xy © Xy

and

Consider the continuum element under a state of
uniform strain eyxy (Fig. Al). If Ax represents the
extension of the element in the x-direction, then,
Ax/a = eyyx; Or, DX = gyxd. The stresses in the element
are given by oyy = Ejjexy and the force in the
x-direction in the element is

F.o=0o..b

X XX b (A4)

= Eyrenx

Imposing an equivalent extension in the
x-direction on the spring element, the force in the
x-direction at the nodes 2 and 3 are given by KyyAx

= Kyyxexxa. The total force in the x-direction in the
element is
F + F
x1 X2
Fo = 3 = Kl (A5)

Hence from Eqgs. (A2) and (A3) Kyx = (Ey1bd/a.
Similarly, by considering a uniform strain eyy
in the y-direction, it may be shown that Kyy
= (Eppa)/b.
From Eq. (A1), the stress in the y-direction,
%yy. in the continuum element due to strain &y, s
oyy = Eolexyx = Ejpexx and the force in the
y=direction is

a (A6)

If Kyy 1s the cross-extensional stiffness coefficient
of the spring element, then, the force in the
y-direction due to displacement ax is:

F., = Kx ax = K a (AT)

y y xy®xx

From Eqs. (A4) and (A5) we have Kyy = Ey3.

Finally, consider the continuum element in a state
of pure shear (shear strain, ny), as shown in Fig. A2.
The shear stress in the element”is Ty = Tyx ° E33°xy'

The force in the x-direction on face 1-2 of the ele-

ment is:

F o=, a=E (A8)

x T Txy 33%xy?

Imposing the corresponding nodal rotations in the
spring element (Fig. A3), the force in the x-direction
of the side 1-2 of the element is:

2Ce
_208 Ty
Fx =% =% (A9)

Hence C = E33ab/2.

Having obtained the spring stiffnesses in terms of
the elastic constants, the stiffness matrix of a LHR

element may now be formulated. The stiffness coeffici-
ents can be evaluated through energy considerations as
follows. The total strain energy U stored in an ele-
ment for any set of arbitrarily varied nodal displace-
ments u; and vy may be written as (refer to Fig. 5
in the text)

1 2 2
U= 7 Kxx(u2 - u‘) + Kxx(u3 - u4)

r[—

2

2
(v4 - v‘) +

Kyy(v3 - vz)

1
* 3 Kyy

No|—

;¥ V3 - vz)(uz - Uy o+ Uy - u4)

<
(A%
14 [}
<
—
+
[=
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—
v
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()
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=
w
o ]
c
(A%
+
<
(84
Ql I
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\_/

(A10)

Using Castigliano's theorem, the nodal forces can
be obtained as follows:

3y
Fai = 53;
(A1)
ay_
Fyi = BV,

Such derivatives for each joint give the element

stiffness matrix in the form
{F} = [K1{d} (A12)

where [K]
{d} <the displacement vector, and
force vector.

Assembly of the LHR stiffness matrix is done by
standard direct stiffness methods employed in finite
element practice.

represents the element stiffness matrix,
{F} the element

APPENDIX B - DERIVATION OF THE STRAIN ENERGY RELEASE
RATE FOR INCIPIENT RUPTURE

Consider a small virtual increase Ac in crack
length in an element under a given external load. The
total potential energy, w, is given by

= % WKy - () (o), (81>

where {u} 1is the nodal displacement vector, (K] is
the element stiffness matrix, and {b} 1is the nodal
force vector.

The energy release rate G 1is obtained from the
variation of = with respect the load, i.e.,

g = % (u3Trek1{u} + (6u}TIKI{u}
- suTb) - (u}Tgsby (B2

Using equilibrium and the fact that the vector {sb}
is null for a given load, the above simplifies to
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S = ;_— wTrsk1(u) (B3)
Hence,

dr 1 3T d
G dic= "7 {u} ac [KI{u} (B4

if [8K] be the change in the stiffness matrix of the
element due to the incipient fracture, i.e., [§K}

; [(Klpefore - [Klafter, then G may written in the
orm

T
AES = _{ﬂ%&l (BS)

TABLE I. - CONSTITUTIVE MATERIAL PROPERTIES

Constituent Young's Poisson's Kic._
modulus, ratio MPa m
GPa
SiC fibers 390 0.3 5.0
SigNg matrix 206 .3 4.6
Interface 206 .3 -
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